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Recent tokamak /I optimization studies have indicated the existence of a p limit propor- 
tional to the plasma current. A two-step numerical optimization procedure is described for 
finding p limits in tokamak configurations with peaked current and flat pressure profiles, such 
as are believed to be characteristic of H-mode plasmas immediately after the L to H transi- 
tion. Current and pressure-driven instabilities are optimized independently by specifying both 
the averaged current density and the pressure gradient directly. Direct control over both the 
global and local characteristics of the pressure profile also permits independent optimization 
of ballooning modes and the low n kink modes that arise at high 8. Results are given for the 
optimization of a circular cross-section tokamak, computed for one value of the plasma 
current. An optimized, stable equilibrium is found, with a /I that is 50% above the limit 
predicted for this current. 64 1986 Academic Press, Inc. 

I. INTRODUCTION 

The existence of an operational b-limit in tokamaks appears to be an experimen- 
tal fact [ 14). The dependence of this limit on the appropriate parameters con- 
forms to the scaling law for the ideal MHD stability limit found in numerical 
optimization studies [S-7]. Nevertheless, this agreement still leaves many questions 
open. For instance, in the optimization studies, /I is constrained by the 
simultaneous requirements of stability to low n kink modes and stability to balloon- 
ing modes, whereas in experiments, the limit manifests itself either as a disruption 
or as confinement degradation. The connection between the theoretical and 
experimental limits is not yet entirely clear. 

“H-mode” auxiliary heated divertor discharges, observed first in ASDEX [S] and 
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now also in PDX [9] and Doublet III [lo], have been found to recover the ohmic 
confinement times that are degraded in “L mode” auxiliary heated plasmas. Above 
a critical density and heating power, a bifurcation of an L-mode discharge is 
triggered (e.g., by a sawtooth heat pulse), which results in a new H-configuration 
that is characterized by a broad density profile and a high edge electron tem- 
perature and gradient, and consequently by a steep edge pressure gradient [ 111. 

The MHD aspects of the H-mode are only now being explored. One new type of 
MHD activity that is normally associated with the H-mode, is the regular fluc- 
tuations, known as Edge Localized Modes (ELMS) [3,4,8, 11-141, that coincide 
with burst-like releases of particles and energy across the separatrix. The ELMS are 
generally interpreted as primarily current-driven MHD surface modes [ 111, 
possibly caused by a periodic broadening of the current density profile [ 121. 
Another MHD phenomenon, observed so far only in H-mode plasmas, is the 
deterioration in confinement as the local /I is increased in the steep pressure 
gradient region near the edge. This is attributed to the onset of MHD ballooning 
modes [13, 143, since it coincides with local violations of the theoretical MHD 
ballooning limits. 

In the context of the b-limit, the experimental results obtained in the H-regime, 
particularly the most recent ones from the ASDEX group [13, 141 have some 
intriguing features. When the beam contribution is subtracted, the limiting /I in the 
H-regime appears to be at about the same value as in the L-regime. Yet the transi- 
tion from the L to H regimes is accompanied by the creation of a very steep tem- 
perature gradient at the plasma edge, which, if the current profile followed the elec- 
tron temperature according to the Spitzer law [15], would imply a steep current 
gradient at the plasma edge. This would be expected to have adverse effects on 
MHD stability, and yet the ELM relaxations are the only visible signs of an even- 
tual destabilization. Recent experiments on ASDEX [ 13, 141 provide evidence that 
the explanation may be that, at the L to H transition, the fast adjustment of the 
temperature profile is not accompanied by a discontinuous transition of the current 
density profile. Instead, the L-mode peaked current density is frozen in after the 
transition to the H-mode, although it can broaden on a slower transport time scale. 
Only the pressure profile (along with the density and temperature profiles) becomes 
very broad at the transition. 

There is, so far, no theoretical study of the stability of such profiles. In particular, 
one consequence of a pressure profile that is much broader than the averaged 
current density, is the existence of a strong m = 1 “Plirsch-Schhiter” current density 
in the outer region of the plasma where the pressure gradient is large. There has 
been no investigation of the effect of currents of this form on MHD stability. 

The object of this paper is to present the modifications made to the equilibrium 
and stability code (EQLAUSERATO [ 161) to handle profiles of this type, and to 
present the first stability results obtained from a procedure developed to optimize 
the fi for these profiles. Three types of mode can be distinguished that need to be 
stabilized in the optimization; instabilities that are driven by the m = 0 averaged 
current density, and two types of “pressure driven” mode. Of these, the low n kink 
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modes are found to depend only on the global pressure profile (i.e., on /?,) and are 
a consequence of the m = 1 Plirsch-Schllter current, whereas the high n ballooning 
modes are sensitive to the local pressure gradient. We are able to stabilize each type 
separately by keeping direct and independent control over the averaged current and 
the global and local features of the pressure profile. 

In the following section, we describe the method used to specify the profiles and 
the class of equilibria chosen for the stability study. The optimization procedure is 
explained in Section III, and the results of a /?-optimization, carried out with this 
class of equilibria, in a circular cross-section Tokamak of aspect ratio 5, are presen- 
ted in Section IV. The conclusions from the study are summarized in Section V. 

II. EQUILIBRIUM 

The equilibria used in numerical optimization studies [S, 6, 17-211 are computed 
by solving the Grad-Shafranov equation for the poloidal flux Y, 

Ll*!P= -(r’p’(Y)+ iv(Y)). (1) 

The numerical optimization studies reported to date, have been restricted to a few 
narrow ranges of equilibrium profiles, either: 

(i) p’(Y) (pressure gradient) and TT’( Y) (toroidal held profile) are specified 
independently [ 5, 6, 17, 1 S] or, 

(ii) p’(Y) and the safety factor 

4( w = T( WP) j WrlW ), (2) 

are specified independently [19-211. Here, the integral over dl is a line integral over 
a poloidal cut of the flux surface. 

Normally, these are given as functional forms with a few adjustable parameters that 
can be optimized. 

An efficient optimization procedure has two important requirements. First, 
genuine control over the equilibrium functions is necessary, especially at the 
endpoints. For example, specifying q provides no control over the edge current den- 
sity, which is an important determinant of kink stability. On the other hand, when 
TT( Y) is specified, though the use of polynomial expansions (say 10 terms) 
provides enough control in principle, in practice, it becomes rather impractical 
when more than 2 or 3 terms are used to finely tailor the profiles [6]. 

The second requirement is an “orthogonal” optimization, in which, once one type 
of mode is stabilized, the parameters are adjusted to stabilize the other modes 
without modifying the stability of the first mode. 

Previous optimization studies have only partially satisfied these two 
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requirements. Optimization studies of the JET and INTOR devices used 
polynomial expressions [S, 61 in p’ and TT' with only two adjustable terms, 

P’(Y) = qy+ p2 Y2), 

TT'(Y)=lt,'P. 

a is determined from normalization to the total current, and 6, and p2 can be 
varied, keeping ballooning stability marginal for example, until the kink limit is 
reached. Such a procedure is “orthogonal” but time consuming, and the global 
polynomial source functions provide limited control. More restricted optimizations 
for JET have also been carried out using exponential profiles with the same number 
of parameters [ 17, IS]. Global representations, however, are not suited to the local 
adjustments of the gradients that are necessary for optimization [6,7] against 
localized stability criteria such as the ballooning criterion. 

Other authors [ 19-211, have suggested the use of q rather than TT', but a search 
over the (p’, q) parameter space is still necessary to find the optimum /3. Further- 
more, specification of q normally results in a finite current density gradient near the 
edge, which, as was shown clearly in Ref. [18], can result in surface kinks with 
small growth rates that cannot always be resolved. At the expense of a significant 
reduction in /J [ 18,213, these have been shown to be stabilized by a slight tailoring 
of the current profile near the edge. 

We present an alternative optimization procedure that, whilst avoiding the 
problem of a finite current density at the plasma surface, retains the advantages of 
direct control over the q profile. The optimization consists of two steps that are 
“orthogonal” in the sense that kink and ballooning modes are stabilized indepen- 
dently. Whereas ballooning modes are driven by the local pressure gradient, to a 
large extent, low n kink modes are driven by either the average current (at low 8,) 
or the m = 1 Pfirsch-Schliiter current (at high /I,) and are insensitive to the details 
of the pressure profile. We therefore, 

(i) specify p’(Y), and either Z’(Y), the derivative of the current contained 
within a given flux surface, 

or equivalently the poloidal average of j,, 

and, 

(ii) construct these profiles from simple piecewise polynomials, matched to 
keep them differentiably continuous. 
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The first feature provides us with the desired direct control over the driving forces 
of the most important instabilities. The second feature provides independent local 
control over the profiles, enabling, for example, the ballooning modes to be 
stabilized by local adjustments of the pressure gradient once the global features 
have been optimized for the low n kink modes. A third feature of our approach is to 
begin with the zero /I case. We find the stability criteria at zero /I, and, for the 
optimization at finite p, we use those criteria to define an operating regime in which 
the modes that are driven by the average m = 0 current are stable. 

The above procedure has two further advantages: 

(i) One can compute a series of equilibria with increasing BP but, as far as is 
possible, with the same magnetic geometry. 

(ii) It offers the possibility of directly specifying H-mode profiles in which the 
pressure profile is much broader than the current profile. The stability results can 
then be related to the MHD activity that is observed experimentally in H-mode dis- 
charges. 

Given p’(Y) and Z’(Y), then TT’( Y) is computed from 

(4) 

To remain the minimum flexibility necessary for adjusting the profiles indepen- 
dently in the centre and edge regions, at least three polynomial sections are 
required for each profile. Furthermore, to ensure that the mapping from Cartesian 
(r, z) coordinates to the flux surfaces is accurately represented, the profiles and at 
least their first derivatives must be continuous. This can be guaranteed by taking 
third order polynomials in each section. The complete specification of the profiles 
would then require a total of ten parameters for each profile; the coordinates of the 
interior nodal points, and the value and derivatives at each node, including the 
endpoints. 

To reduce the number of free parameters to a more manageable level, for most 
purposes, we can impose the conditions that r(Y) and p’(Y) be linear in the out- 
ermost and innermost regions, respectively, thus removing four parameters. This 
only affects the higher order behaviour of the profiles in the respective regions, and 
is relatively unimportant for stability. Note that similar conditions could not be 
imposed in the central sections without sacrificing the continuity conditions, nor in 
the other two end sections without sacrificing the flexibility to treat a variety of 
configurations. Nevertheless, one more parameter can still be removed, with only a 
small loss of generality, by requiring that p’(Y) be stationary at the node between 
the last two sections. This restriction allows us to simulate the H-mode pressure 
profile by setting the peak pressure gradient near the surface. 

Taking s E (Y - Ug)/( YS - ul,), where Y0 and Y, represent the values at the axis 
and plasma surface, respectively, then in the most general case that we therefore 
need consider, we prescribe (see Fig. 1 ), 
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FIG. 1. Current I’(V) (or J(I)) and pressure gradient p’(Y) profiles versus s = (Y - ul,)/( Y’, - Y,,). 
The profiles are defined in three separate sections delineated by s = a,, b, and s = aP, b,, respectively. 
a,, b,, a,,, and b, are specified, as well as the values and derivatives of I’ and p’ that are shown at s = 
0, a, b, and 1. For clarity, the sign of p’ is reversed in the diagram. 

a~+b,s+cls2+dls3, O<s<a, 

a2 + b,s + c2s2 + d,s3, a,cs-cb, 

a3 + b3S, b,<s<l 

i 

el +fih O-csca, 

p’(Y)= e2 +f2s + g2s2 + h,?, a,-cs-cb, 

e3 +f3s + g,s* + h3s3, b,<s< 1. (5b) 

The coefficients for Z’(Y) are directly determined from the values of Z’(Y) and its 
derivative at s = 0 (ZO and dro/ds), at s = 1 (< and dc/ds), and at s = a, (I: and 
dZA/ds). For p’(Y), we determine the coefficients from the values and derivatives of 
p’(Y) at s = 0 and s = 1 (pb, dpb/ds, pi and dpi/ds), and from the value at b, (pi) 
where p’(Y) is assumed to be at its maximum. The remaining coefficients are 
defined by the eight conditions for continuity of Z’(Y) and p’(Y) and their first 
derivatives. 

This prescription provides enough flexibility to obtain reasonable safety factor 
profiles in the wide variety of configurations that we have so far considered. In nor- 
mal operation, pb, dpb/ds, ZS, and dTS/ds are set to zero so that there is no pressure 
gradient at or near the axis, and the current density and its gradient vanish at the 
edge of the current channel. This ensures that the Mercier Criterion is satisfied in 
the vicinity of the axis, and avoids the current-driven surface modes that are 
associated with finite edge current density. For the remaining free parameters 
governing Z’(Y), Z0 determines the total current (or qS; the value of q at the sur- 
face), Zb, dZbJds, and dZi/ds determine the shape of the q profile, a, defines the width 



of the current channel (or qJqO; the global shear), and b, defines the steepness of 
the current drop. 

For the examples with circular cross-section that we consider here, we can reduce 
the number of free parameters still further by confining ourselves to the simplest 
possible situation. In that case, it is sufficient to take a rounded Shafranov current 
density profile [22] by setting drdds and drJds equal to zero, and taking Zh = Zb, 
thus fixing the shape of the q profile, and by fixing b, - a,; this parameter having 
little effect on ideal MHD stability, although it does affect the numerical resolution. 
Then at zero p, this defines a two-dimensional operating space, over which, the 
kink stability boundaries can be determined (by varying b,) at any total current 
(i.e., given Z&). The q-profiles that we obtain in a circular cross-section equilibrium, 
using the Shafranov current density profile, are almost always flat over a large 
region in the centre, with high shear only near the edge. 

For the parameters that define p’(Y), pi is determined by the required BP, and 
the two parameters up and 6, are determined by the requirements for ballooning 
stability. We still have the possibility of allowing a finite pressure gradient and zero 
average current density right at the surface. It is not clear what effect the resulting 
oppositely directed Plirsch-Schltiter surface currents will have. For our purposes, 
we take the simplest possible case by neglecting this possibility and setting pi. = 0, 
but we keep the pressure gradient large as near to the surface as numerical 
resolution allows. The influence of finite edge pressure gradient is deferred to a later 
study. For the purpose of illustrating the optimization procedure, one final 
parameter can also be fixed by imposing a condition on the derivative of p’( !P) at 
the surface. This is most easily achieved by requiring that p’(s) be quadratic in the 
last section. This is, of course, a purely arbitrary restriction, but it serves the pur- 
pose of limiting the number of free parameters to a manageable number, whilst 
minimizing spurious higher order variations of the profile. 

We now briefly mention the numerical aspects involved in converting the stan- 
dard equilibrium code (EQLAUS), with p’ and TT’ given as polynomials, to the 
new code in which p’ and Z’ are given. The equilibrium is computed using an (r, z) 
Grad-Shafranov code that assumes a fixed boundary, with the total toroidal 
current given. Symmetry in the z = 0 plane is assumed. On each iteration, we 
require the integrals s r dZ/lVYI and j dZ/(rlVY’(). The N, flux surfaces are mapped 
from the magnetic axis out along N, angular rays by interpolation from the (r, z) 
grid flux values. This defines p( Y, 0) and VY, where p is the radius vector from the 
magnetic axis. The integations are then calculated by quadratures. TT’( Y) is com- 
puted using Eq. (4) at the (Y, z) mesh points, from quadratic interpolation of the 
integrals known on the (Y, 0) mesh. Accuracy is kept as close as possible to second 
order in the equilibrium mesh. Normally, best convergence and accuracy for cir- 
cular cross-section equilibria is obtained with N, - N, - NJ3 - 2N,/3. 

Convergence is generally about a factor three slower with Z’(Y) than with the 
standard code, and total computation time increases by roughly a factor 10. For 
noncircular cross-sections, convergence is even slower. However, this drawback can 
be alleviated by using J(Y) (Eq. (3b)) rather than Z’(Y). One extra surface integral 
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FIG. 2. Flow diagram for the modilied EQLAUS equilibrium code. The modifications for specifying 
I’(Y) or J( ul) are enclosed by the box (- - -). 

is required, but the convergence rate improves dramatically, and is faster than the 
standard code in most cases of interest, especially at high resolution. With J(Y), the 
time required to calculate a high resolution equilibrium (N, x Nz N 240 x 120), is 
generally a factor two to three greater than for the standard code (EQLAUS), the 
extra time being consumed almost entirely in the mapping of the flux surfaces 
required at each iteration. 

An outline of the equilibrium code is shown in Fig. 2. Stability is computed from 
the variational finite hybrid-element code ERATO [16]. For this purpose, p’( !P) 
and 7’T( Y) are fed in from the equilibrium code as tables, and interpolated in 
ERATO, onto the ERATO grid. 
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III. OPTIMIZATION PROCEDURE 

In the one-dimensional cylindrical limit, it is possible to find arbitrarily high p, 
stable equilibria by taking a flat current profile with a current-free region, of some 
critical width, near the surface (i.e., a hard core pinch), and by placing all of the 
pressure gradient within the current-free region [22] . In a torus, such a con- 
figuration is limited by high /I pressure-driven modes; ballooning modes and the so- 
called “ballooning-type” kink modes [23]. In a torus, the current-free region can 
only be current free on average over a flux surface. Current-driven instabilities can 
still arise at finite B from the presence of Pfirsch-Schhiter currents, and these could 
also limit the achievable b, However, one can still expect that the kink limit would 
remain high and that the ballooning limit could be increased by spreading the 
pressure gradient inside, until it is marginally stable, without affecting the kink 
stability. 

Therefore, by taking the simplest possible case, namely the rounded Shafranov 
current profile that was proposed in the previous section, we can optimize against 
kink stability at a given total current with the aid of just one other parameter, and, 
by using the pressure gradient profile that was also proposed in Section II, we can 
hope to obtain reasonably high /? equilibria with profiles that mock the main 
features of the H-mode. To illustrate the optimization procedure, we will therefore 
confine ourselves to this simplified situation. Nevertheless, it should be kept in mind 
that the procedure can be generalized to include further optimization over the other 
parameters, for example, over the shape of the q profile, or by allowing finite 
pressure gradients right at the edge. 

Our optimization requires a knowledge of the stability properties of a given con- 
figuration at zero /I, so that we can optimize the fl from a sound basis. The results 
of a general parameter survey at zero p are described elsewhere [24], but for our 
circular cross-section, with the profiles described in Section II, the results can be 
summarized as follows: Stability against n = 1, m = 2 surface kinks requires that 
qs > 2. Stability against free-boundary “toroidal kinks” [24] requires q. > 1. In 
addition, q, > a(q,) q,, is required to avoid higher (n, m) surface kink modes 
[ 18,241, where a 1: 1 for the rounded Shafranov profiles that we are using. At finite 
/I, we assume that these criteria are still necessary (though not necessarily sufficient) 
for stability against purely current-driven modes. This assumption simplifies the 
optimization procedure by restricting the parameter range, during the later /3 
optimization steps, to avoid the region in which the kinks driven by the average 
current-density are already unstable. Costly convergence studies on the small 
growth rate modes that can arise when q. < 1 or qs < a(q,) q. are thereby avoided. 
The assumption has been validated by the finite /I stability results obtained so far, 
in which convergence studies always predict instability when the criteria are 
violated. 

The optimization proceeds in two main steps. For fixed constant current, the /L? is 
maximized with regard to kink stability by varying the current channel width 6,. 
An equilibrium is considered stable for this purpose, if it satisfies a a* criterion [25] 
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of N 10P4, and it satisfies the zero fi stability criteria mentioned above. During this 
step the pressure gradient is maintained outside the current channel (i.e., aP = b,), 
and the resulting equilibrium is normally strongly ballooning unstable. As well as 
taking advantage of the area weighted definitions of J? and BP, keeping p’ in the 
current-free region spatially separates the two principal instability driving terms. In 
particular, the m = 0 and m = 1 parts of the current profile are spatially decoupled. 

The second step stabilizes the ballooning by spreading the pressure gradient 
inside at constant /?,. This has a relatively small effect on the kink stability since the 
average current density is maintained constant and the equilibria are therefore 
affected as little as is possible. Only small adjustments are then required to obtain 
the optimum. The kink is generally destabilized slightly, since spreading the 
pressure inside at fixed current tends to decrease qo, and this can drop below unity. 
In addition, there can be some residual ballooning instability once the pressure 
gradient is spread all the way to the axis. The former is stabilized by a small 
adjustment in the current channel width at constant /I,. The latter can be stabilized 
either by a small adjustment in the position of b,, by optimizing over dpi/ds, or by 
a small drop in /I,. The final b should not be lowered much from the original kink 
stable equilibrium that was obtained after the first step. 

The intermediate 12 ideal modes (n = toroidal mode number) are ignored during 
the optimization; these are assumed to be stable if the n = 1 and infinite n balloon- 
ing modes are stable. Their stability can always be checked after the optimization is 
completed. On the other hand, the constraints imposed by tearing modes in the 
steep current gradient region may be important, and these have also been ignored 
in the present work. If necessary, tearing modes could probably be stabilized by a 
further rounding of the current profile, since the steepness of the drop is a free 
parameter. 

The important feature of the optimization is that the kink and ballooning 
stability are strongly affected by the widths of the current and pressure profiles 
respectively but are only weakly affected by the converse. Furthermore, to the 
extent that the kink modes can be driven unstable at high p, they are essentially 
only affected by the global /I value, whereas the ballooning stability is dependent on 
the local pressure gradient. In the optimization described here, these parameters are 
directly and independently controlled. 

IV. RESULTS AND DISCUSSION 

We consider, as an example, a circular cross-section equilibrium with aspect ratio 
R/a = A = 5. Four series of equilibria with increasing poloidal fi were constructed at 
constant normalized current, IN = p,,I/ROBO, by varying the channel width b,, and 
the stability of each was determined for the n = 1 free-boundary kink mode using 
the ERATO stability code. We use an equilibrium mesh N, x N, of 160 x 80, 
N, x N, is set at 40 x 40, and the equilibria are iterated to a maximum residue in Y 
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When the current channel is narrow or p is high enough, the instabilities are free- 
boundary modes, analogous to the internal “ballooning-type” kinks discussed in 
Ref. [23 J, and are normally categorized as pressure-driven modes. Examples are 
shown in Figs. 4a and b. Fig. 4a corresponds to a case in the &series with 
q. = 1.153, qs = 3.923, and /I, = 3.513. The instability is strongly ballooning on the 
outside of the torus and has a relatively large growth rate. Inside the q = 2 surface, 
the mode is an m = 2 kink, coupled to predominantely m = 3,4 components within 
the other q surfaces, and to an m = 5 component right near the edge. As the mode 
becomes more marginal, (Fig. 4b), it becomes more localized and a more com- 
plicated structure emerges, but the evidence of a ballooning component is still 
apparent. This mode corresponds to one of the G-series with q. = 1.0006, qr = 
3.4345, and fl, = 2.904. The poloidal mode structure is the same as in Fig. 4a, but in 
this case, there is a strong radial modulation in amplitude. 

When the current channel extends further out, the mode structure is modified, as 
in Fig. 4c, and the mode resembles a current-driven surface kink [ 18, 241. This case 

CAPP EPF - LAUSRNNE “ERRTO” 85/11/08. 
x*x EQUILI8RIUH F1608OF 160/80 
*** AI = 0.50 8, = 0.70 RP = 0.70 BP = 0. 

SCRLE = 1000 QRXIS = 1.1532 QSURF = 3.9225 
N= i. REXT = INF EIGNV = -.387E-01 
NPSl = EO NCHI = 40 

FIG. 4. Mode structures of free-boundary finite-b kinks. (a) Unstable high /I, q. = 1.153, qs = 3.923, 
BP = 3.513, and y’/rfi = 0.0387. (b) Weakly unstable, narrow current; q. = 1.0006, qs = 3.434, BP = 2.904, 
and v2/r: = 0.000261. (c) Weakly unstable, broad current; q. = 1.404, qs = 2.841, /I, = 1.450, and y2/y2 = 
O.ooO182. 



. _ _ _ 
CRPP EPF LRUSRNNE ‘ERRTO” 85/11/06. 

“I” EQUlLlBAlUM ~16080~ 160/RO 
*** RI = 0.45 81 = 0.65 RP = 0.65 BP = 0. 

SCRLE = .I000 QRXl5 = 1.0006 Q-SURF = 3.U3US 
N= 1. REXT = INF EIGNV = -.26iE-03 
NPSI = 80 NCHI = 40 

C 

CRPP EPF - LRUSANNE ‘ERRTO” 85/11/06 
l *” EQUILIBRIUM E1600UP 160/80 
*** RI = 0.55 61 = 0.75 AP = 0.75 BP = 0 

SCRLE = . !OOO QRXlS = I.110113 QSURF = 2.8909 
N= 1. AEXT = INF EIGNV = -. lE2E-03 
NPSI = 80 NCHl = 110 

FIG. 4-Continued. 
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has q. = 1.404, qs = 2.841, and ,8,, = 1.450, and would be stable according to the zero 
fi criteria for current-driven modes since qs > a(q,) qo. One can conclude that the 
zero /I current-driven surface mode is destabilized by the finite pressure gradient if 
the current channel is too broad. The higher n modes are even more unstable than 
the n = 1 mode shown here, and, although the ballooning component is more 
prominent, they still have the same general features; they are highly localized near 
the edge, and they have the appearance of current-driven modes that are 
destabilized only at finite p by the Pfirsch-Schltiter current. These modes (most 
likely the higher n Fourier components) could therefore be responsible for the 
ELM’s that are observed experimentally in H-mode discharges [3,4, 8, 1 l-141. The 
onset of the instability seems to require a sufficiently high fi and a sufficiently broad 
current profile. This is consistent with the results reported in Refs. [ 12-141. As the 
plasma evolves on a transport time scale, the averaged current profile, which was 
frozen in from the L-mode transition, broadens until it triggers the ELM, after 
which, the plasma relaxes to a more stable configuration by restricting the current 
and increasing the shear. The sequence is repeated in a sawtooth-like fashion 
[11-141. One can picture the plasma as evolving and relaxing, at essentially con- 
stant BP, through the series E, F, G, and H in Fig. 3. According to this scenario, in 
ELM-free discharges [3], the artificially enhanced radiation could modify the 
transport [ 141, in such a way as to limit the broadening of the current profile, 
thereby suppressing the ELMS. 

To optimize the p, we choose the highest /3, equilibrium that is stable according 
to a C* criterion of 0.5 x 1O-4 and the zero /I criteria for current-driven modes dis- 
cussed earlier. The toroidal kinks that are destabilized when q. < 1, have growth 
rates that scale with (cz/R)~ over the standard kink mode ordening, where k -2q,. 
They cannot therefore always be resolved by the c2 criterion that we have chosen. 
The zero /I criteria imply that the entire curve labelled H is rejected since q. < 1. 
Nevertheless, in this particular case, the chosen kink-optimized equilibrium, 
indicated by an “ x ” in Fig. 3, coincides with the highest /I, stable equilibrium as 
determined by the a* criterion alone, indicating that our choice of a2 is a 
reasonable one in the sense that it does resolve the slowly growing toroidal kinks. 
However, at lower currents where qs is larger, the growth rates for these modes 
would not have been resolved by the a2 criterion alone. We have also verified the a2 
criterion for this particular case by convergence studies, which showed that the 
chosen equilibrium is, in fact, stable, but that the point above on the same curve 
(q. = 1.006, q, = 3.346) is unstable. 

The kink-optimized equilibrium is strongly ballooning unstable. Spreading p’(Y) 
inside (a, + 0) at constant /I, stabilizes most of this but slightly destabilizes the 
kink in two ways; q. drops below unity and the pressure-driven ballooning-type 
kink is marginally destabilized. Decreasing /I, would stabilize both of these and the 
residual ballooning, but does not give the optimum 8. On the other hand, moving 
b,, either further destabilizes the kink or the ballooning. Instead, however, by mov- 
ing the current channel outwards slightly at constant BP, q. is raised to stabilize the 
current-driven mode. The pressure-driven mode is stabilized at the same time if b, is 
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FIG. 5. Sequence of profiles at various stages of optimization. (a) Kink-optimized equilibrium 
profiles. The ballooning-unstable region is indicated. (b) Ballooning stabilized by spreading the pressure 
gradient inside at constant /l,,. (c) Pressure gradient spread until a0 =O. Some residual ballooning- 
unstable surfaces remain and the toroidal kink (q,, < 1) and ballooning-type kink are slightly 
destabilized. (d) Final optimum B equilibrium stabilized by a small shift in the current profile and a 
small drop in 8,. Further changes in the profiles, except decreasing B,, result in the destabilization of the 
various modes shown. 

held fixed, leaving only the residual ballooning region unstable. This is then 
stabilized by a relatively small drop in BP, from 2.63 to 2.47, keeping all else fixed, 
The final p is only about 10% lower than the kink-optimized equilibrium with all 
the pressure gradient outside the current channel. 

The complete optimization sequence is illustrated in Fig. 5. The q profiles for the 
original kink-optimized equilibrium and the final fully optimized stable equilibrium 
are shown in Fig. 6. These are plotted against the ERATO coordinate sE = & 
[16]. The strong edge shear stabilizes the plasma against the large pressure 
gradient near the surface. The q profiles are also extremely flat in the centre, ensur- 
ing that q. remains above unity, despite the strong edge shear. Also shown are the 
profiles of the source function W(s). The important feature here is the change in 
sign near the outer edge. There, TT’ is of opposite sign to the pressure gradient so 
that the nett toroidal current vanishes on average over a flux surface. 

The optimized equilibrium has been checked for stability against higher n modes 
(n = 1,2,3 and 4) and convergence checked for instability with a2 less than 10e6. 
The final, stable, optimum /I equilibrium has a, = 0.47, b, = 0.67, up = 0.0, b, = 0.80, 
and has j?, = 2.47 with /? = 1.58 %. This is to be compared with the limiting value 
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FIG. 6. Safety factor q(Y) and Toroidal Field Function TT’( Y) versus the ERATO coordinate & 
for (a) kink-optimized and (b) fully optimized equilibria. 

[5] of PT= 2.2Z,A, where I, = ~&4/R,&, is the normalized current. For our case, 
Z,=O.lO and fir= 1.1%. 

With the optimization procedure that we have used, and the profiles we have 
chosen, we are therefore able to raise the kink limitation in the scaling of Ref. [S], 
and find equilibria that are limited predominantly by ballooning. In fact, the /? is 
about 10% above the ballooning limit of Bw = 2.81,A = 1.4 %, found by Wesson 
and Sykes [7] for circular cross-section equilibria in the large aspect ratio limit. 
The optimized current and safety factor profiles obtained here, are also quite 
similar to those obtained in Ref. [7]. However, in our case, the pressure profile has 
not been completely optimized against ballooning; this would require that p’( ul) be 
marginal everywhere. In principle, this could be done if the pressure profile is 
defined piecewise using a large enough number of nodes. The /3 could then be raised 
well above the Wesson-Sykes limit. 

Even with the simplifying restrictions that we have imposed, further optimization 
of the pressure profile is possible since the parameters b,, pi, and dp:/ds (as well as 
&, and dpb/ds if the Mercier Criterion is not too restrictive) are still at our disposal. 
A more complete optimization could be made, for example, by optimizing for the 
ballooning by varying both a, and b, simultaneously. The kink might be 
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destabilized by a greater amount in that case, but could still be restabilized by a 
shift in the current profile. Alternatively, one could try to remove the residual 
ballooning by varying dpi/ds, but this could not stabilize the small ballooning 
unstable region inside the node b,, so b, and dpijds would also have to be 
optimized simultaneously. The introduction of another parameter, however, would 
make the optimization unmanageable, and would not necessarily lead to the steep 
edge pressure gradient of the H-mode configuration, consequently, we have not 
attempted further optimization. The equilibrium that we have obtained is 
marginally ballooning stable only in the steep pressure gradient region near the 
edge, This is consistent with the recent results reported in Ref. [14]. 

The experimentally observed H-mode equilibria generally lie close to or below 
the limit /IT. The improvement over this value is presumably a result of the 
Shafranov profiles that we have assumed. These are known to be more optimistic 
for purely current-driven modes, both in a straight cylinder [22], and in toroidal 
geometry [24]. Furthermore, they are quite similar to the profiles obtained in Ref. 
[7] for the optimum-/I ballooning-stable equilibrium, in the large aspect ratio limit 
of a circular cross-section tokamak. More realistic H-mode profiles, in which the 
averaged current density is not strictly zero in the outer region, would probably 
result in a lower /I limit for the low n kink modes. Nevertheless, the same physical 
processes as discussed here, would still be expected to operate. The Shafranov 
profiles could possibly even be realized experimentally if current-drive were 
employed to tailor the current density profile independently of the pressure 
gradient. The results of the present study would then predict a significant 
improvement in /I. 

The high /I that we have obtained in this particular case may still be fortuitous, 
however, since q3 is just above three, and there is some evidence [5,21] that the 
limit in Ref. [S] has some modulation, with peaks just above the integer qs values. 
Nevertheless, such a strong modulation for circular cross-section equilibria would 
be unprecedented. 

To conclude this section, we now consider an interesting feature of Fig. 3. As BP is 
increased for fixed current, the equilibrium becomes more unstable as expected. 
There are three competing effects operating. Increasing B,, increases the free-energy 
available for pressure-driven modes, but also decreases qo, even though q,v increases. 
The change in q. is minimal, but the increase in shear, which tends to be stabilizing, 
is significant. Also, increasing the width of the current-free sheath, tends to increase 
the p, at which instability sets in. q. is decreased substantially as this is done, but 
again the stabilizing shear increases. 

We therefore have two separate ways of increasing the shear, either by increasing 
the pressure gradient maximum, or by decreasing the current channel width. In 
both cases, increasing shear is associated with increasing pP, but the latter is 
stabilizing, and, at low /I, the former is destabilizing for the kink. This and the fact 
that the growth rates for each curve do, in fact, show a stabilizing trend at high BP, 
suggests the possible existence of a second stability region for free-boundary kink 
modes, analogous to the second stability regions for ballooning modes [26] and 

581/66/Z-11 
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the internal kink [27]. At present, numerical convergence problems prevent an 
extension of the curves, so the existence of the second stability region remains 
undecided. 

V. CONCLUSIONS 

From the results of Ref. [7] and this study, it seems that there is probably a uni- 
que, stable, optimum-/3 equilibrium, in which the current profile is determined by 
low n kink stability, and the pressure gradient is determined by large n ballooning 
stability. A well-defined optimization procecure can be constructed for finding this 
equilibrium, in which the profiles are defined in terms of splines, with the nodal 
values of the pressure profile uniquely optimized against the ballooning criterion, 
and the current profile similarly optimized against kink stability. Such a procedure 
could possibly be formulated variationally. 

The simplified algorithm described in this work, preserves the most important 
features of the general procedure, namely prescription of the profiles locally in 
terms of the nodal values, and independent control over the two major driving for- 
ces behind the instabilities, i.e., over the current and pressure profiles, so that kink 
and ballooning stability can be optimized independently. The simplification consists 
of the reduction in the number of nodal values that are prescribed, yet the most 
important gross features of the profiles, width, steepness, etc., are still prescribed 
directly. 

The results from an optimization study of circular cross-section equilibria, with 
profiles modelled on those of H-mode discharges, can be summarized as follows: 

(i) For the type of profiles that we have taken, the ballooning limit is 
generally much more severe than the external kink limit. The intermediate n modes 
lie between these two limits. This result is surprising in that it is in contrast to the 
usual situation in previous studies [S, 6, 17-211. 

(ii) Despite the reversal in the kink and ballooning limits, we find that the 
optimum occurs when the ballooning and low n kink limits roughly coincide. This 
seems to be true in all previous optimization studies, indicating that the two types 
of mode are driven by physical mechanisms with opposing tendencies. Yet the two 
types of mode are driven by different physical mechanisms; the low n kinks depend 
on global features of the current and pressure profiles, whereas the ballooning 
modes depend on local details of the pressure gradient. In this sense, the /I limits for 
kink and ballooning modes are mutually independent. This is clear from the fact 
that an optimistic choice of current profile such as ours, can raise the low n kink 
limit well above the limit in Ref. [S], and that by optimizing the pressure profile, 
the high and intermediate n mode limits can also be raised to this value. 

(iii) We have found H-mode like, circular cross-section equilibria, stable to 
both ballooning modes and to ideal n d 4 kink modes at /I, = 2.47 and /I = 1.58 %. 
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This is 50% above the limit given in Ref. [S], and 10% above the limit given in 
Ref. [7] for this current. 

(iv) The Wesson-Sykes ballooning limit [7] can probably also be surpassed 
by more than the few percent achieved here, if a finite pressure gradient is admitted 
at the surface, or if a complete ballooning optimization is performed over the whole 
pressure profile. 

(v) We have identified a mode that may be responsible for the ELMS that 
are observed in H-mode plasmas [3, 4, 8, 11-14-J The mode has the features of a 
current-driven MHD surface mode, but requires a sufficiently high /?, as well as a 
sufficiently broad current channel. 

(vi) We have found evidence for the possible existence of a second region of 
stability for external free-boundary kink modes. 

The algorithm described here, though applied only to circular cross-section, is 
applicable to noncircular cross-sections such as bean or racetrack shapes, where 
specification of TT’ in the usual way generally results in either extremely high shear 
equilibria or hollow q profiles. 
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